yo TELECOM
.ﬁiﬁiml SudParis
INSTITUT

Mines-Télécomi%gm'

ClipartOf.com/1047132

Memory management
for big data

Gael Thomas, professor at Telecom SudParis

Il’m a researcher in system

B 2015 — today: Professor at Telecom SudParis/Paris
Language runtimes, multicore, parallelism, HPC, hypervisors

B 2006 — 2015: Ass. prof. at UPMC Sorbonne Univ./Paris
Language runtimes, multicore, parallelism

B 2005 - 2006: PostDoc at LIG/Grenoble
Distributed systems

m 2001 — 2005: PhD at UPMC Sorbonne Univ./Paris
Design and implementation of Java virtual machines

2 11/10/16 Gaél Thomas Memory Management for big-data

And | like doing systems!

.| gthomas@archlinux:~/research/vrack/src

ACPI_OBJECT obj:

parms.Count = 1;
parms.Pointer = &obj:

obj.Type = ACPI_TYPE_INTEGER;:
obj.Integer.Yalue = 1;

if(ACPI_FAILURE(s = AcpiEvaluateOb ject (ACPI_ROOT_OBJECT. (char®)"_PIC", &parms.\
0)))

panic("unable to switch to acpi apic mode (error Zd)\n", s):

¥

void ACPIDriver::add{(Device* parent. Domain* domain. void* info) {
printk("Attaching ACPL bus to "):
parent—->printName () ;
printk("\n");

/% inform acpi that we are using I0-Apic */
ACPIDevice* dev = new ACPIDevice(parent. domain):

enterficpifApicMode () ;

void¥ res:
AcpiMalkNamespace (ACPI_TYPE_DEYICE, ACPI_ROOT_OBJECT, 100, visitDescending
-UU-:——F1 acpi-driver.cc 6% (38.43) Git:master (C++/1 Abbrev)

~/research/vrack/src/drivers/acpi/|

1Ll/A1V/ ALV Jact rniviinias

yo 8 TELECOM
.ﬁiﬁim‘l SudParis
INSTITUT

Mines-Télécomﬁ%gml

ClipartOf.com/1047132

Memory management
for big data

Data, data, data

98,000
L“’ tweets
. - . s 23,148 apps
B Amount of data increases .. & . nloaded

exponentially — g 900.710ad

. R - requests
» Web (facebook, gmail, -)

google, Amazon...) = ===\ Every

ile, social,

- Devices (Waze, ita & the cloud 60 seconds
healthcare monitoring,
banking...) - @ 2000lyrics played

e on Tunewikl
» Science (Large Hadron s R @ '5%0cincs
Collider...) Rl sent on PingMe
P e 34,597 people
e ..:.:. Cones using Zino
— - R 208,333 minutes of
- T Angry Birdsplayed

11/10/16 Gaél Thomas Memory Management for big-data

I Data analytics

B Analyzing this data is a key ingredient in many domains
Market analysis, banking, scientific computations...

Analyzing big data requires
efficient and powerful computing infrastructures

To illustrate, the Large Hadron Collider generates 1 PB each day
(~ 1,000 hard drives)

11/10/16 Gaél Thomas Memory Management for big-data

But achieving performance is difficult
(even with data analytics algorithms of genius)

7 11/10/16 Gaél Thomas Memory Management for big-data

Because infrastructures are complex...

B Data centers are geo-distributed

B Each data center contains
a complex computers
infrastructure

B Each computer is itself
a distributed network

11/10/16 Gaél Thomas Memory Management for big-data

9

... and system stacks are complex

A typical system stack includes more than 107 lines of code

Spark

JVM

Linux

VMWare

11/10/16

Gaél Thomas

X

(@)

Q

JVM 7

-

Linux 2
2

VMWare N

Hardware

Memory Management for big-data

IHow can we achieve better efficiency?

By building efficient system stacks
for big-data analytics ©

10 11/10/16 Memory Management for big-data

IA typical research work

Work of Lokesh Gidra (defense the 2015 28" september)
Now research engineer at HP labs at Palo Alto, CA, USA

11 11/10/16 Gaél Thomas Memory Management for big-data

IBig data and memory management

Page rank computation with Spark on 108 nodes

Memory management of the JVM on a modern 48-core
takes roughly 60% of execution time
while it takes less than 10% on a 4-core
(heap size is 40GB)

12 11/10/16 Gaél Thomas Memory Management for big-data

IThe problem: the GC does not scale

Page rank computation with Spark on 108 nodes

>

N
OV WUNWVLWWLD™WU U
|

W

Ideal Scalability

=

Garbage
Collector of
Hotspot

=

o

- ©

—
D

GC Throughput
(GB collected per second)

1 6 24 36 48
of cores

13 11/10/16 Gaél Thomas Memory Management for big-data

IBackground: Java garbage collector

B Automatically reclaims unused objects by considering the
Java heap as a directed graph

* Nodes are the Java objects
- Edges are the Java reference

« Traverse the graph in order to find live objects
Unreachable objects

d .
Roots of the graph : IO
b C
Local vars, f
Global vars -

11/10/16 Gaél Thomas Memory Management for big-data

IBackground: Java garbage collector

B At each time, a Java process is either
» Executing the application
« Reclaiming unused memory (GC pause)

Reclaim unused
Execute the

Thr:eads (Stol\g?[hme(irv?//orl d application
[pause time)
>
Time
60% 40%

15 11/10/16 Gaél Thomas Memory Management for big-data

IBaseIine GC: Parallel Scavenge

B Generationnal hypothesis: objects die young

Young Generation
(Frequently collected)

Old Generation
(Rarely collected)

16 11/10/16 Gaél Thomas Memory Management for big-data

Baseline GC: Parallel Scavenge

Copy objects
(give a several chances before promotion)

/ |
: To Space Young Generation

Eden Space r--—------=----- (Frequently collected)

' | From Space

Copy object
(promoted to the old space)

Old Generation

v
Old Space (Rarely collected)

17 11/10/16 Gaél Thomas Memory Management for big-data

Baseline GC: Parallel Scavenge

Copy objects
(give a several chances before promotion)

/ |

C _TP_S_P_af? ___ | Young Generation
Eden Space (Frequently collected)

.| From Space
Copy object
(promoted to the old space)
old SV Old Generation
pace (Rarely collected)
~. /

\/

Compact the heap by copying objects
(avoid fragmentation in the old space)

11/10/16 Gaél Thomas Memory Management for big-data

IAnaIysis of the GC bottleneck

B A modern multicore is a small distributed system

Node O Node 1
> S
E = — = E
O ()
= x =
- -
@) O
c - — - c
() ()
= =

Node 2 Node 3

19 11/10/16 Gaél Thomas Memory Management for big-data

IAnaIysis of the GC bottleneck

B A modern multicore is a small distributed system

Application silently creates inter-node references

Node O Node 1
- S
& — — - GEJ
H R 1 8
o P e
ol & TR -
))
= =

Node 2 Node 3

20 11/10/16 Gaél Thomas Memory Management for big-data

IAnaIysis of the GC bottleneck

B A modern multicore is a small distributed system

Threads of the memory manager perform random accesses

Node 0 Node 1

-
3 :
)
=

Memory \ \
Manager 2 C‘g ‘ o
@) @)
Thread c — =
))
= =

Node 2 Node 3

21 11/10/16 Gaél Thomas Memory Management for big-data

IAnaIysis of the GC bottleneck

B A modern multicore is a small distributed system

The memory manager uses many threads

22 11/10/16 Gaél Thomas Memory Management for big-data

IAnaIysis of the GC bottleneck

B A modern multicore is a small distributed system

And eventually the network between the nodes saturates
= drastically slows down memory access time

Node O Node 1

23 11/10/16 Gaél Thomas Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1

-

|

[
Thread 0 § E < > 8 § Thread 1

Memory
Memory

24 11/10/16 Gaél Thomas Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1

>

/

/
7/ (> ()
Thread 0 § (< O § Thread 1

Memory
Memory

25 11/10/16 Gaél Thomas Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1

Az

/

/ e
/ W > ()
Thread 0 § (< O § Thread 1

Memory
Memory

26 11/10/16 Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1

B A

B
Thread 0 § E < > 8 § Thread 1

Memory
Memory

27 11/10/16 Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1
e | 2
s | _— 4&) 2
O A\ O
> \ >

AT
Thread 0 § E < > 8 \§ Thread 1

28 11/10/16 Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1

=

\
(> ()
Thread 0 § (< O \§ Thread 1

Memory

29 11/10/16 Gaél Thomas Memory Management for big-data

ISqution: a hew memory manager
NUMAGIC: a memory manager with a distributed design

|ldea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

Node 0 Node 1

-

\

\
(> ()
Thread 0 § (< O \§ Thread 1

Memory
Memory

30 11/10/16 Memory Management for big-data

INUMA-friendIy placement heuristics

B Problem: 1 message is more costly than 1 remote access
=> |nter-node references must be minimized

?

Node O

Node 1

O

@_=:

(O

=0

O

Too many messages

?

B Observation: a thread mostly connects objects it has

allocated

B Heuristics: let objects allocated by a thread on its node
= side effect: improve memory access locality for the application

31 11/10/16

Gaél Thomas

Memory Management for big-data

INUMA-friendIy placement heuristics

But “Let objects allocated by a thread on its node”
raises a problem

* If only one node allocate the memory,
« All the GC threads accesses the allocation node
= the node collapse

32 11/10/16 Gaél Thomas Memory Management for big-data

INUMA-friendIy placement heuristics

B Eden:
Allocate in the current NUMA node

B Eden — To Space - i To?pace

Local copy Eden Space r--------------

Steal from remote , | From Space

B From Space — Old Space
Local copy
Steal from remote \

B Old Space — Old Space Old Space Y
Local copy only T~

——
Local copy = prevents remote references
Steal from remote = balance memory on all the nodes
(important in order to avoid overloaded nodes)

33 11/10/16 Gaél Thomas Memory Management for big-data

IAdaptive algorithm

B Problem: strictly avoiding remote access degrades

parallelism Node 0 Node 1

AT

Node 1 idles while node O collects its memory

B Happen often because we minimize inter-node references!

B Solution: adaptive algorithm
» Local mode: send messages when not idling
» Thief mode: steal and access remote objects when idling

34 11/10/16 Gaél Thomas Memory Management for big-data

I Experiments — hardware setting

B Amd48 : AMD Magny Cour with
* 8 nodes
» 48 threads
« 256 GB of RAM

B |ntel80 : Xeon E7-2860 with

* 4 nodes
160 threads
« 512 GB of RAM

35 11/10/16 Gaél Thomas Memory Management for big-data

Experiments — software setting

Name Description Heap Size

Amd48 Intel80
Spark In-memory map-reduce 110 to 250 to
P (page rank computation) 160GB 350GB
Neodi Object graph database 110 to 250 to
] (page rank computation) 160GB 350GB
. : : 24 to 24 to
SPECjbb2013 Business-logic server 10GB 10GB
SPECjbb2005 Business-logic server 4 1o 4 1o
i usiness-logic serve RGB 19GB

1 billions node The 1.8 billions node
from the Friendster dataset of the Friendster dataset

11/10/16 Gaél Thomas Memory Management for big-data

GC Throughput from x2 to x5

37

11/10/16

Gaél Thomas

—+— NumaGiC
SpecdBB13 SpecJBB0S

X —Improved PS - -E-- NAPS
Spark Neo4j
6 4 - 3,
5 / % +
3 i L
o 4 | > \(f
(:35_ 3 - - 2 gi\‘x M .
L 2 E"—/—_/ 1 '\"5? 1 NN/*%___.E
D 1 - N
o 0 0 0
c 110 135 160 110 135 160 24 32 40
— 8- 4 - 2
O ¢] 1
4 7 2E§\\\ 1 577"~
e o) f —X ~1?
2 & o] Fremor TN
0 0 0
250 300 350 250 300 350 24 32 40
Heap Sizes

10 -

S N

SN A~ NXXODWN

:/*___}

on
F=- e Amd48
4 6 8

on
oo Intel80

8

10 12

Memory Management for big-data

INUMAGiC scalability

Ideal
5 o Scalability
4.5
*g_ 4 NumagGiC
-CC:,, 3.5
O 3 7]
£ 25 —~ NAPS
8 1 ; Improved
'1 \P S Hotspot
05 Baselme —> (the JVM that
(_)' 0 you uses every day)

1 6 24 36 48
of nodes

11/10/16 Gaél Thomas Memory Management for big-data

I Improvement for the applications

94%

2 82%
1.8
1.6
1.4
1.2

.
0.8
0.6 —

0.4

Speedup relative
to Improved PS

0.2

0o

Spark Neo4y SpecdJBB13 SpecJBB0S

mmmm NAPS m NumaGiC

Heap size of 160GB on Amd48 and 350GB on Intel80

39 11/10/16 Gaél Thomas Memory Management for big-data

ITo take away

B Performance of big-data analytics relies on GC
performance

B Memory access locality has huge effect on GC
performance

B Enforcing locality can be detrimental for parallelism in GCs

B No big difference between Intel and Amd NUMA
architectures

40 11/10/16 Gaél Thomas Memory Management for big-data

ITo take away

B Performance of big-data analytics relies on GC
performance

B Memory access locality has huge effect on GC
performance

B Enforcing locality can be detrimental for parallelism in GCs

B No big difference between Intel and Amd NUMA
architectures

Thank You ©

41 11/10/16 Gaél Thomas Memory Management for big-data

11/10/16 Gaél Thomas Memory Management for big-data

