
Gaël	Thomas	

Memory management
for big data

Gaël Thomas, professor at Telecom SudParis

Gaël	Thomas	

I’m a researcher in system

 2015 – today: Professor at Telecom SudParis/Paris
Language runtimes, multicore, parallelism, HPC, hypervisors

 2006 – 2015: Ass. prof. at UPMC Sorbonne Univ./Paris
Language runtimes, multicore, parallelism

 2005 – 2006: PostDoc at LIG/Grenoble
Distributed systems

 2001 – 2005: PhD at UPMC Sorbonne Univ./Paris
Design and implementation of Java virtual machines

11/10/16	 Memory	Management	for	big-data	2	

Gaël	Thomas	

And I like doing systems!

11/10/16	 Memory	Management	for	big-data	3	

Gaël	Thomas	

Memory management
for big data

Gaël	Thomas	

Data, data, data

 Amount of data increases
exponentially
•  Web (facebook, gmail,

google, Amazon…)
•  Devices (Waze,

healthcare monitoring,
banking…)

•  Science (Large Hadron
Collider…)

11/10/16	5	 Memory	Management	for	big-data	

Gaël	Thomas	

Data analytics

 Analyzing this data is a key ingredient in many domains
Market analysis, banking, scientific computations…

Analyzing big data requires
efficient and powerful computing infrastructures

To illustrate, the Large Hadron Collider generates 1 PB each day
(~ 1,000 hard drives)

11/10/16	6	 Memory	Management	for	big-data	

Gaël	Thomas	

But achieving performance is difficult
(even with data analytics algorithms of genius)

11/10/16	7	 Memory	Management	for	big-data	

Gaël	Thomas	

Because infrastructures are complex…

 Data centers are geo-distributed

 Each data center contains
a complex computers
infrastructure

 Each computer is itself
a distributed network

11/10/16	8	 Memory	Management	for	big-data	

Gaël	Thomas	

… and system stacks are complex

A typical system stack includes more than 107 lines of code

Network

VMWare

Linux

JVM

Spark

VMWare

Linux

JVM

S
ys

te
m

 s
ta

ck

H
ar

dw
ar

e

11/10/16	9	 Memory	Management	for	big-data	

Gaël	Thomas	

How can we achieve better efficiency?

By building efficient system stacks
for big-data analytics ☺

11/10/16	10	 Memory	Management	for	big-data	

Gaël	Thomas	

A typical research work

Work of Lokesh Gidra (defense the 2015 28th september)
Now research engineer at HP labs at Palo Alto, CA, USA

11/10/16	11	 Memory	Management	for	big-data	

Gaël	Thomas	

Big data and memory management

Page rank computation with Spark on 108 nodes

Memory management of the JVM on a modern 48-core
takes roughly 60% of execution time

while it takes less than 10% on a 4-core
(heap size is 40GB)

11/10/16	12	 Memory	Management	for	big-data	

Gaël	Thomas	

The problem: the GC does not scale

Page rank computation with Spark on 108 nodes

G
C

 T
hr

ou
gh

pu
t

(G
B

 c
ol

le
ct

ed
 p

er
 s

ec
on

d)

Garbage
Collector of
Hotspot

Ideal Scalability

1 6 24 36 48
of cores

11/10/16	13	 Memory	Management	for	big-data	

Gaël	Thomas	

Background: Java garbage collector

 Automatically reclaims unused objects by considering the
Java heap as a directed graph
•  Nodes are the Java objects
•  Edges are the Java reference
•  Traverse the graph in order to find live objects

a

b c

d

f

g

h

i

j

e

Unreachable objects

Roots of the graph :
 Local vars,
 Global vars

11/10/16	14	 Memory	Management	for	big-data	

Gaël	Thomas	

Background: Java garbage collector

 At each time, a Java process is either
•  Executing the application
•  Reclaiming unused memory (GC pause)

Reclaim unused
Memory

(Stop-the-world
pause time)

Execute the
application

Time

Threads

60%	 40%	

11/10/16	15	 Memory	Management	for	big-data	

Gaël	Thomas	

Baseline GC: Parallel Scavenge

 Generationnal hypothesis: objects die young

11/10/16	 Memory	Management	for	big-data	16	

Old Generation
(Rarely collected)

Young Generation
(Frequently collected)

Gaël	Thomas	

Baseline GC: Parallel Scavenge

11/10/16	 Memory	Management	for	big-data	17	

Old Generation
(Rarely collected)

Young Generation
(Frequently collected)

Old Space

To Space

From Space
Eden Space

Copy objects
(give a several chances before promotion)

Copy object
(promoted to the old space)

Gaël	Thomas	

Baseline GC: Parallel Scavenge

11/10/16	 Memory	Management	for	big-data	18	

Old Generation
(Rarely collected)

Young Generation
(Frequently collected)

Old Space

To Space

From Space
Eden Space

Copy objects
(give a several chances before promotion)

Compact the heap by copying objects
(avoid fragmentation in the old space)

Copy object
(promoted to the old space)

Gaël	Thomas	

Analysis of the GC bottleneck

 A modern multicore is a small distributed system

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

11/10/16	19	 Memory	Management	for	big-data	

Gaël	Thomas	

Analysis of the GC bottleneck

 A modern multicore is a small distributed system

Application silently creates inter-node references

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

11/10/16	20	 Memory	Management	for	big-data	

Gaël	Thomas	

Analysis of the GC bottleneck

 A modern multicore is a small distributed system

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

Threads of the memory manager perform random accesses

Memory
Manager
Thread

11/10/16	21	 Memory	Management	for	big-data	

Gaël	Thomas	

Analysis of the GC bottleneck

 A modern multicore is a small distributed system

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

The memory manager uses many threads

11/10/16	22	 Memory	Management	for	big-data	

Gaël	Thomas	

Analysis of the GC bottleneck

 A modern multicore is a small distributed system

Node 0 Node 1

Node 2 Node 3

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

And eventually the network between the nodes saturates
⇒ drastically slows down memory access time

11/10/16	23	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	24	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	25	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	26	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	27	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	28	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	29	 Memory	Management	for	big-data	

Gaël	Thomas	

Solution: a new memory manager

NUMAGiC: a memory manager with a distributed design

Idea: instead of accessing memory on a remote node,
a thread notifies another thread on the remote node

M
em

or
y

M
em

or
y

Node 0 Node 1

Thread 0 Thread 1

11/10/16	30	 Memory	Management	for	big-data	

Gaël	Thomas	

NUMA-friendly placement heuristics

 Problem: 1 message is more costly than 1 remote access
 => Inter-node references must be minimized

 Observation: a thread mostly connects objects it has
allocated
 Heuristics: let objects allocated by a thread on its node
⇒ side effect: improve memory access locality for the application

Node 0 Node 1

Too many messages

11/10/16	31	 Memory	Management	for	big-data	

Gaël	Thomas	

NUMA-friendly placement heuristics

But “Let objects allocated by a thread on its node”
raises a problem
•  If only one node allocate the memory,
•  All the GC threads accesses the allocation node
⇒ the node collapse

11/10/16	 Memory	Management	for	big-data	32	

Gaël	Thomas	

NUMA-friendly placement heuristics

 Eden :
Allocate in the current NUMA node
 Eden → To Space
Local copy
Steal from remote
 From Space → Old Space
Local copy
Steal from remote
 Old Space → Old Space
Local copy only

11/10/16	 Memory	Management	for	big-data	33	

Old Space

To Space

From Space
Eden Space

Local copy ⇒ prevents remote references
Steal from remote ⇒ balance memory on all the nodes

(important in order to avoid overloaded nodes)

Gaël	Thomas	

Adaptive algorithm

 Problem: strictly avoiding remote access degrades
parallelism

 Happen often because we minimize inter-node references!

 Solution: adaptive algorithm
•  Local mode: send messages when not idling
•  Thief mode: steal and access remote objects when idling

Node 0 Node 1

Node 1 idles while node 0 collects its memory

11/10/16	34	 Memory	Management	for	big-data	

Gaël	Thomas	

Experiments – hardware setting

 Amd48 : AMD Magny Cour with
•  8 nodes
•  48 threads
•  256 GB of RAM

 Intel80 : Xeon E7-2860 with
•  4 nodes
•  160 threads
•  512 GB of RAM

11/10/16	35	 Memory	Management	for	big-data	

Gaël	Thomas	

Experiments – software setting

Name Description Heap Size
Amd48 Intel80

Spark In-memory map-reduce
(page rank computation)

110 to
160GB

250 to
350GB

Neo4j Object graph database
(page rank computation)

110 to
160GB

250 to
350GB

SPECjbb2013 Business-logic server 24 to
40GB

24 to
40GB

SPECjbb2005 Business-logic server 4 to
8GB

4 to
12GB

1 billions node
from the Friendster dataset

The 1.8 billions node
of the Friendster dataset

11/10/16	36	 Memory	Management	for	big-data	

Gaël	Thomas	

 0

 1

 2

 3

24 32 40

GC Throughput from x2 to x5

 0

 2

 4

 6

 8

250 300 350

 0

 1

 2

 3

 4

110 135 160

 0

 1

 2

 3

 4

250 300 350
 0

 1

 2

24 32 40

 0
 2
 4
 6
 8

 10

4 6 8

 0
 2
 4
 6
 8

 10
 12

8 10 12

G
C

 T
hr

ou
gh

pu
t

Heap Sizes

Spark Neo4j SpecJBB13 SpecJBB05

on
Amd48

on
Intel80

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC

Improved PS NAPS NumaGiC

 0
 1
 2
 3
 4
 5
 6

110 135 160

11/10/16	37	 Memory	Management	for	big-data	

Gaël	Thomas	

NUMAGiC scalability

G
C

 T
hr

ou
gh

pu
t

of nodes

Improved
PS

Baseline

NumaGiC

Ideal
Scalability

NAPS

1 6 24 36 48

Hotspot	
(the	JVM	that		

you	uses	every	day)	

11/10/16	38	 Memory	Management	for	big-data	

Gaël	Thomas	

Improvement for the applications
Sp

ee
du

p
re

la
tiv

e

to
 Im

pr
ov

ed
 P

S

Spark Neo4j SpecJBB13 SpecJBB05

NAPS NumaGiC

94%
82%

36%
64%

55% 61%

27%
42%

Heap size of 160GB on Amd48 and 350GB on Intel80
11/10/16	39	 Memory	Management	for	big-data	

Gaël	Thomas	

To take away

 Performance of big-data analytics relies on GC
performance

 Memory access locality has huge effect on GC
performance

 Enforcing locality can be detrimental for parallelism in GCs

 No big difference between Intel and Amd NUMA
architectures

11/10/16	40	 Memory	Management	for	big-data	

Gaël	Thomas	

To take away

 Performance of big-data analytics relies on GC
performance

 Memory access locality has huge effect on GC
performance

 Enforcing locality can be detrimental for parallelism in GCs

 No big difference between Intel and Amd NUMA
architectures

Thank You ☺

11/10/16	41	 Memory	Management	for	big-data	

Gaël	Thomas	11/10/16	42	 Memory	Management	for	big-data	

