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I’m a researcher in system 

 2015 – today: Professor at Telecom SudParis/Paris 
Language runtimes, multicore, parallelism, HPC, hypervisors 

 2006 – 2015: Ass. prof. at UPMC Sorbonne Univ./Paris 
Language runtimes, multicore, parallelism 

 2005 – 2006: PostDoc at LIG/Grenoble 
Distributed systems 

 2001 – 2005: PhD at UPMC Sorbonne Univ./Paris 
Design and implementation of Java virtual machines 
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And I like doing systems! 
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Data, data, data 

 Amount of data increases 
exponentially 
•  Web (facebook, gmail, 

google, Amazon…) 
•  Devices (Waze, 

healthcare monitoring, 
banking…) 

•  Science (Large Hadron 
Collider…) 

11/10/16	5	 Memory	Management	for	big-data	



Gaël	Thomas	

Data analytics 

 Analyzing this data is a key ingredient in many domains 
Market analysis, banking, scientific computations… 

Analyzing big data requires 
efficient and powerful computing infrastructures 

To illustrate, the Large Hadron Collider generates 1 PB each day 
(~ 1,000 hard drives) 
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But achieving performance is difficult 
(even with data analytics algorithms of genius) 
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Because infrastructures are complex… 

 Data centers are geo-distributed 

 Each data center contains 
a complex computers 
infrastructure 

 Each computer is itself  
a distributed network 
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… and system stacks are complex 

A typical system stack includes more than 107 lines of code 
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How can we achieve better efficiency? 

By building efficient system stacks  
for big-data analytics ☺ 
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A typical research work 

Work of Lokesh Gidra (defense the 2015 28th september) 
Now research engineer at HP labs at Palo Alto, CA, USA 
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Big data and memory management 

Page rank computation with Spark on 108 nodes 

Memory management of the JVM on a modern 48-core 
takes roughly 60% of execution time 

while it takes less than 10% on a 4-core 
(heap size is 40GB) 
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The problem: the GC does not scale 

Page rank computation with Spark on 108 nodes 
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Background: Java garbage collector 

 Automatically reclaims unused objects by considering the 
Java heap as a directed graph 
•  Nodes are the Java objects 
•  Edges are the Java reference 
•  Traverse the graph in order to find live objects 
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Unreachable objects 

Roots of the graph : 
 Local vars, 
 Global vars 
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Background: Java garbage collector 

 At each time, a Java process is either 
•  Executing the application 
•  Reclaiming unused memory (GC pause) 

Reclaim unused 
Memory 

(Stop-the-world  
pause time) 

Execute the 
application 

Time 

Threads 

60%	 40%	
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Baseline GC: Parallel Scavenge 

 Generationnal hypothesis: objects die young 
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Baseline GC: Parallel Scavenge 

11/10/16	 Memory	Management	for	big-data	17	

Old Generation 
(Rarely collected) 

Young Generation 
(Frequently collected) 

Old Space 

To Space 

From Space 
Eden Space 

Copy objects 
(give a several chances before promotion) 

Copy object 
(promoted to the old space) 



Gaël	Thomas	

Baseline GC: Parallel Scavenge 
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Old Generation 
(Rarely collected) 
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Analysis of the GC bottleneck 

 A modern multicore is a small distributed system 
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Analysis of the GC bottleneck 

 A modern multicore is a small distributed system 

Application silently creates inter-node references 
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Analysis of the GC bottleneck 

 A modern multicore is a small distributed system 
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Threads of the memory manager perform random accesses 
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Analysis of the GC bottleneck 

 A modern multicore is a small distributed system 
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The memory manager uses many threads 
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Analysis of the GC bottleneck 

 A modern multicore is a small distributed system 
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And eventually the network between the nodes saturates 
⇒ drastically slows down memory access time 
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
a thread notifies another thread on the remote node 
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
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Solution: a new memory manager 

NUMAGiC: a memory manager with a distributed design 

Idea: instead of accessing memory on a remote node,  
a thread notifies another thread on the remote node 
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NUMA-friendly placement heuristics 

 Problem: 1 message is more costly than 1 remote access 
  => Inter-node references must be minimized 

 Observation: a thread mostly connects objects it has 
allocated 
 Heuristics: let objects allocated by a thread on its node 
⇒ side effect: improve memory access locality for the application 

Node 0 Node 1 

Too many messages 
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NUMA-friendly placement heuristics 

But “Let objects allocated by a thread on its node”  
raises a problem 
•  If only one node allocate the memory,  
•  All the GC threads accesses the allocation node 
⇒ the node collapse 
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NUMA-friendly placement heuristics 

 Eden : 
Allocate in the current NUMA node 
 Eden  → To Space 
Local copy 
Steal from remote 
 From Space → Old Space 
Local copy 
Steal from remote 
 Old Space → Old Space 
Local copy only 
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Old Space 

To Space 

From Space 
Eden Space 

Local copy ⇒ prevents remote references 
Steal from remote ⇒ balance memory on all the nodes 

(important in order to avoid overloaded nodes) 
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Adaptive algorithm 

 Problem: strictly avoiding remote access degrades 
parallelism 

 Happen often because we minimize inter-node references! 

 Solution: adaptive algorithm 
•  Local mode: send messages when not idling 
•  Thief mode: steal and access remote objects when idling 

Node 0 Node 1 

Node 1 idles while node 0 collects its memory 
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Experiments – hardware setting 

 Amd48 : AMD Magny Cour with  
•  8 nodes 
•  48 threads 
•  256 GB of RAM 

 Intel80 : Xeon E7-2860 with  
•  4 nodes 
•  160 threads 
•  512 GB of RAM 
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Experiments – software setting 

Name Description Heap Size 
Amd48 Intel80 

Spark In-memory map-reduce 
(page rank computation) 

110 to 
160GB 

250 to 
350GB 

Neo4j Object graph database 
(page rank computation) 

110 to 
160GB 

250 to 
350GB 

SPECjbb2013 Business-logic server 24 to  
40GB 

24 to 
40GB 

SPECjbb2005 Business-logic server 4 to  
8GB 

4 to 
12GB 

1 billions node 
from the Friendster dataset 

The 1.8 billions node 
of the Friendster dataset 
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NUMAGiC scalability 
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Ideal 
Scalability 

NAPS 

1   6     24      36     48 

Hotspot	
(the	JVM	that		

you	uses	every	day)	
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Improvement for the applications 
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Heap size of 160GB on Amd48 and 350GB on Intel80 
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To take away 

 Performance of big-data analytics relies on GC 
performance 

 Memory access locality has huge effect on GC 
performance 

 Enforcing locality can be detrimental for parallelism in GCs 

 No big difference between Intel and Amd NUMA 
architectures 
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To take away 

 Performance of big-data analytics relies on GC 
performance 

 Memory access locality has huge effect on GC 
performance 

 Enforcing locality can be detrimental for parallelism in GCs 

 No big difference between Intel and Amd NUMA 
architectures 

Thank You ☺ 
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