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Disclaimer
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Any performance tuning advice provided
in this presentation.....

will be wrong!
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Me
Work as independent (a.k.a. freelancer)

performance tuning services
benchmarking
Java performance tuning course and seminars

Co-author: www.javaperformancetuning.com
Contributing editor: www.theserverside.com
Nominated Sun Java Champion
Blah blah blah
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Change the way you think about performance tuning
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Motivation
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Changes in hardware are now 
redefining the rules of coding, design, 

and Architecture
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Old Thinking
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Rethink Architecture
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My View

Started performance tuning in late 80s
Cray supercomputers

Fortran, C, CAL, Special purpose languages
Special Purpose Devices (VHDL)
Smalltalk Systems
Java Platform (97)
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How did we get better performance?
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Historical Improvements

Sometimes better algorithms
Mostly faster Hardware

Clock speeds (read CPU)
Bus
Memory
Networks

Exotic hardware

11



www.kodewerk.com

Machine Specific Optimizations
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Needed to study existing or create new 
hardware
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Cray CPU Block Diagram

13



www.kodewerk.com

Developers Adapted to Hardware
Code needed to utilize key 
features altering coding style

Short loops with no 
branching
regular memory strides
• always increment loop 

counters by 1
statistically acceptable errors

Align short loops and 
functions on instruction buffer 
boundaries
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National Center for Atmospheric 
Research

#pragma _CRI align function1, ....
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Intel Zeon Block Diagram
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High Performance Early Days
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Parallel Computing
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Threading Early On
Process mostly single threaded
“threading” limited for forking the process

Clumsy at best
two different processes
difficult to share results
difficult to coordinate activities
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if ( fork() == 0)
    childProcess();
    exit();
else
    parentProcess();
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Hardware/OS/Language Leapfrog
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Posix Threading Support (Early 90s)

UNIX kernels single threaded (80)
SunOS is made SMP safe (91)

entire kernel is protected with a single lock
threaded in 93

AIX pthread support 93?
Windows NT released 93

simplified alternative to pthreads
HP-UX POSIX suffers setback (95)
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Languages Play Catch-up

Java Platform explodes onto the scene (96)
support for distributed and parallel computing

Strong play to virtualize hardware
cross-platform threading model

21



www.kodewerk.com

Java Thread Support

Synchronized statement and modifier
• map to OS level locks

volatile keyword
• no one knows what it does

java.lang.Thread
java.lang.Object.wait()
java.lang.Object.notify()
java.lang.Object.notifyAll()
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Java Threading 1.0

Single threaded model
green threads used by JVM
eventually mapped onto a single OS 

thread

Java Memory Model hiding concurrency 
bugs
CPU Memory Model hiding concurrency 
bugs
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Memory Models

Formal specification of how memory operations 
will function

ensure consistency in our view of variables
enforces strict ordering of memory operations
allow or disallow compiler optimizations 

Java Memory Model
Chip level Memory Model

Intel
AMD
Sparc
PowerPC
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Hints of the Future
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Beginning with J2SE 1.4.1, the Java HotSpot Server VM 
does not support operations on chips with Sparc V8 
architecture
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Hardware Plays Catch-up

Sparc V9 contain pseudo instructions to sync L1, 
L2 cache with main memory on multi-cpu 
machines
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Sparc V8

L1 Cache

L2 Cache

x

x'

fetch x

Main Memory

Sparc V8

L1 Cache

L2 Cache
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Hardware Acceleration Slows

Intel announces that focus will shift from clock 
speed to multi-core/hyperthreading

multi-core Xeon processors ship late 2005
2007, C|Net reports, Intel and Microsoft state that 
software needs to heed Moore’s law
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New Programming Environment
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Kabutz: Law of Sudden Riches

We no longer have uni-processor systems to hide 
behind

Applications suddenly have more CPU
bigger problem for older 3rd party libraries
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Dangers

All existing threading bugs start exposing 
themselves
We have to worry about

deadlock
live lock
thread stalls
race conditions

Lock contention
serialized execution

Strange behavior in clusters
.....
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Database Vendors React
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Laptops go Multi-core

Late 2006, ~50% of Java performance course 
attendees show up with multi-core laptops
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Multi-core is a fact of life

Developers must deal with concurrency
truly threaded applications are more the norm
Multi-core puts more pressure on
• memory
• I/O resources
• shared variables
• Databases?

Sharing is a big performance issue
points of serialization now hurt more than ever
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Little’s Law

Maths explaining the relationship between locking 
and throughput
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b
a
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critical

section

λ =1 / μ
μ = 10ms, λ = 100 tps
μ = 100ms, λ = 10 tps
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Maths to explain relationship between serialized 
execution and processor utilization

F -> 0 number of utilized CPU -> N
F -> 1 number of utilized CPU -> 1

Amdahl’s Law
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F + ( 1 - F )

1

N
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Serialized Execution
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Amdahl’s Law

Amdahl says; things work until we need to share 
(or otherwise cooperate)

CPU
• both computational units and L1/L2 cache

bus is locked too all other threads while in use
memory/Java Heap (Garbage collection)
I/O (disk, keyboard, console, files)
network
data in memory (locks)
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Are You Awake?

L1/L2 caches can thrash

benches in 430ms

benches in 2750ms

40

for ( int i = 0; i < matrix.length; i++) {
            for ( int j = 0; j < matrix[i].length; j++) {
                matrix[i][j] *= 2;

for ( int i = 0; i < matrix.length; i++)
            for ( int j = 0; j < matrix[i].length; j++)
                matrix[j][i] *= 2;
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Locking is Pessimistic
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The glass is half full
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Reducing Contention

Share nothing designs
Pipelined designed

messaging and mail boxes
Minimize transactions

duration
numbers

Minimize locking
Concurrency package

Garbage collection
Hotspot/JIT
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Careful use of Databases
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Automated Memory Management

GC is “stop-the-world”
GC needs exclusive access to Java heap
all application threads must be paused
point of serialization in your application

GC is CPU intensive
application pause time tied to clock speed

An improperly configured Java heap hinders 
performance

Too small => too frequent, risk OOME
Too large => long pause times
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Law of Leaky Abstractions
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Java Heap Space

Address

Translation

Disk

System Memory

Garbage Collector
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Keeping Friends Close

Large page support now on all 
platforms

keeps related objects on the same 
page
helps avoid TLB misses (expensive 
to resolve)
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lock pages into RAM
Solaris support is up to 256m (depending on 
class of machine)
Linux/Windows is up to 4m
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Garbage Collection

1.5 parallel becomes default
consider using concurrent

1.6 support escape analysis
references that remain local can be dealt with 
more efficiently
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More to Come?

Dominate chip architecture is cache-coherent 
non-uniform memory access (NUMA)

local access is very quick
remote access is much slower
encourages thread/core affinity
• mitigates L1/L2 cache coherency issues
• reduces contention on bus and remote memory
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Garbage Collection Improvements

GC/JVM allocations aware of NUMA
localized allocations GC’d faster
localized allocations stay remain in CPU cache
enabled using -XX:useNUMA (1.6 Update 2)
• Solaris is simple
• Windows and Linux require more complex 

configuration
http://java.sun.com/javase/technologies/hotspot/
largememory.jsp
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Locking

Acquiring a lock is expensive
maybe

Vast majority of locks are not contended
RDB vendors have known for more than 20 
years, locking kills performance

what can we learn from RDBs
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Optimizations

Use observations to guide optimizations
Relax constraints
Throughput vs. fairness
Cache to avoid using expensive resources
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Hardware to Reduce Contention

Transactional Memory
looks more like an optimistic transaction
lock defines “transactional region”
allows all threads simultaneous access
hardware watches for write-write conflict
thread rollback and memory repair
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Software Improvements

JSE 5.0 provides a laundry list of improvements 
aimed at reducing contention

atomic variables
improved volatile
java.util.concurrent (JSR 166)

semantically richer concurrency
Collections with copy on write semantics
ConcurrentHashMap
ReentrantLock
ReadWriteLock
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Choice
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Which is best?
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Monitoring
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public void run() {
    boolean detected = false;
    while ( running) {
        if ( ( counter < 0) || (counter > 2)) {
            if ( ! detected) {
                System.out.println( "Corrupted " + counter);
                detected = true;
            }
        }
    }
}
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Mutator
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private int counter = 0;

Runnable mutator = new Runnable() {
    public void run() {
        long localCount = 0;
        while ( running) {
            counter++;
            counter--;
            localCount++;
        }
        addToTotalCount( localCount);
    }
};
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Volatile
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volatile private int counter = 0;

Runnable mutator = new Runnable() {
    public void run() {
        long localCount = 0;
        while ( running) {
            counter++; counter--;  localCount++;
        }
        addToTotalCount( localCount);
    }
};
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Doubly Synchronized
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// Instance based counter
private int counter = 0;

// Runnable block
Runnable mutator = new Runnable() {
    public void run() {
        long localCount = 0;
        while ( running) {
            synchronized( this) { counter++;}
            synchronized(this) { counter--; }
            localCount++;
        }
        addToTotalCount( localCount);
    }
};
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Synchronized
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// Instance based counter
private int counter = 0;

// Runnable block
Runnable mutator = new Runnable() {
    public void run() {
        long localCount = 0;
        while ( running) {
            synchronized {
                counter++; counter--;
            }
            localCount++;
        }
        addToTotalCount( localCount);
    }};
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Doubly Reentrant Lock
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// Instance based counter
private int counter = 0;
private ReentrantLock lock;

// Runnable block
    try {
        lock.lock();
        counter++;
    } finally { lock.unlock(); }
    try {
        lock.lock();
        counter--;
    } finally { lock.unlock(); }
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Reentrant Lock
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// Instance based counter
private int counter = 0;
private ReentrantLock lock;

// Runnable block
try {
    lock.lock();
    counter++;
    counter--;
} finally {
    lock.unlock();
}
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AtomicInteger
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// Instance based counter
private AtomicInteger counter;

// Runnable block
while ( running) {
    counter.incrementAndGet();
    counter.decrementAndGet();
    localCount++;
}
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Results
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Bench Counter

Not Thread Safe 750526139

Volatile 333765152

Double Synchronized 28829033

Synchronized 28799357

Double Locked 28966764

Locked 28830148

AtomicInteger 203393689

JDK 1.5.0_10, Intel 3.4 Ghz Hyper-threaded, Window XP
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Locking

java.util.concurrent.locks.Lock
Allows you to park threads
• for a specific amount of time including forever

ReentrantLock
• comes with a fairness setting

ReentrantReadWriteLock
• support multiple readers
• writer blocks all access
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Compare and Set

Atomic primitive wrappers rely on CAS
unsynchronized thead safe type
good for atomic operations

CAS is used to support thread safe lock-free 
algorithms

needs support from the hardware
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cas mem_addr, old_value, new_value
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Coming Soon?

Cliff Click’s lock-less concurrent HashTable
still a research project
extremely complex implementation
allows race conditions to determine state in the 
supporting state-machine
relies on CAS

FIFO, LIFO?
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JVM Improvements

JSE 6.0 adds to the list of features that can 
reduce contention

spin-waits (adaptive spinning)
lock coarsening
lock elision (with escape analysis)
biased locking
altered notify semantics (less lock jamming)
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Does any of this stuff actually work?
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How Good is Escape Analysis
Bench devised by Jeroen Borgers (Xebia)
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public String concatBuffer( String s1, String s2, String s3) {
    StringBuffer sb = new StringBuffer();
    sb.concat( s1);
    sb.concat( s2);
    sb.concat( s3);
    return sb.toString();
}

public String concatBuilder( String s1, String s2, String s3) {
    StringBuilder sb = new StringBuilder();
    sb.concat( s1);
    sb.concat( s2);
    sb.concat( s3);
    return sb.toString();
}
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Lock Overhead
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Benchmark StringBuffer StringBuilder %Overhead

Baseline 7896 2760 186%

Escape Analysis 7875 2756 185%

Elimination 4068 2739 48%

Biased 5489 2843 93%

Escape, Elimination 4078 2813 45%

Escape, Biased 5500 2849 93%

Elimination, Biased 4718 2812 68%

Escape, Elimination, Biased 4740 2828 68%
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The Future is Clear

Processors will contain
many more cores

Memory will be segmented
local segments as part of a global space

Applications will continue need to be hardware 
aware
Languages improvements

could closures offer better expression of 
parallelism?
Totally new language?
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The Future is Clear

Operating systems and hardware are being 
optimized to better support virtual machines
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Contention is Under Siege
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pessimistic optimistic Improving Concurrency
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Are you prepared to deliver twice 
as much concurrency in the next 

18 months?
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Concurrency & Performance
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