
30 Jan 2008 www.jfokus.se / www.kodewerk.com

Concurrency & Performance

3

www.kodewerk.com

Disclaimer

4

Any performance tuning advice provided
in this presentation.....

will be wrong!

www.kodewerk.com

Me
Work as independent (a.k.a. freelancer)

performance tuning services
benchmarking
Java performance tuning course and seminars

Co-author: www.javaperformancetuning.com
Contributing editor: www.theserverside.com
Nominated Sun Java Champion
Blah blah blah

5

Change the way you think about performance tuning

www.kodewerk.com

Motivation

6

Changes in hardware are now
redefining the rules of coding, design,

and Architecture

www.kodewerk.com

Old Thinking

7

www.kodewerk.com8

Rethink Architecture

www.kodewerk.com

My View

Started performance tuning in late 80s
Cray supercomputers

Fortran, C, CAL, Special purpose languages
Special Purpose Devices (VHDL)
Smalltalk Systems
Java Platform (97)

9

www.kodewerk.com

How did we get better performance?

10

www.kodewerk.com

Historical Improvements

Sometimes better algorithms
Mostly faster Hardware

Clock speeds (read CPU)
Bus
Memory
Networks

Exotic hardware

11

www.kodewerk.com

Machine Specific Optimizations

12

Needed to study existing or create new
hardware

www.kodewerk.com

Cray CPU Block Diagram

13

www.kodewerk.com

Developers Adapted to Hardware
Code needed to utilize key
features altering coding style

Short loops with no
branching
regular memory strides
• always increment loop

counters by 1
statistically acceptable errors

Align short loops and
functions on instruction buffer
boundaries

14

National Center for Atmospheric
Research

#pragma _CRI align function1,

www.kodewerk.com

Intel Zeon Block Diagram

15

www.kodewerk.com

High Performance Early Days

16

www.kodewerk.com

Parallel Computing

17

www.kodewerk.com

Threading Early On
Process mostly single threaded
“threading” limited for forking the process

Clumsy at best
two different processes
difficult to share results
difficult to coordinate activities

18

if (fork() == 0)
 childProcess();
 exit();
else
 parentProcess();

www.kodewerk.com

Hardware/OS/Language Leapfrog

19

www.kodewerk.com

Posix Threading Support (Early 90s)

UNIX kernels single threaded (80)
SunOS is made SMP safe (91)

entire kernel is protected with a single lock
threaded in 93

AIX pthread support 93?
Windows NT released 93

simplified alternative to pthreads
HP-UX POSIX suffers setback (95)

20

www.kodewerk.com

Languages Play Catch-up

Java Platform explodes onto the scene (96)
support for distributed and parallel computing

Strong play to virtualize hardware
cross-platform threading model

21

www.kodewerk.com

Java Thread Support

Synchronized statement and modifier
• map to OS level locks

volatile keyword
• no one knows what it does

java.lang.Thread
java.lang.Object.wait()
java.lang.Object.notify()
java.lang.Object.notifyAll()

22

www.kodewerk.com

Java Threading 1.0

Single threaded model
green threads used by JVM
eventually mapped onto a single OS

thread

Java Memory Model hiding concurrency
bugs
CPU Memory Model hiding concurrency
bugs

23

www.kodewerk.com

Memory Models

Formal specification of how memory operations
will function

ensure consistency in our view of variables
enforces strict ordering of memory operations
allow or disallow compiler optimizations

Java Memory Model
Chip level Memory Model

Intel
AMD
Sparc
PowerPC

24

www.kodewerk.com

Hints of the Future

25

Beginning with J2SE 1.4.1, the Java HotSpot Server VM
does not support operations on chips with Sparc V8
architecture

www.kodewerk.com

Hardware Plays Catch-up

Sparc V9 contain pseudo instructions to sync L1,
L2 cache with main memory on multi-cpu
machines

26

Sparc V8

L1 Cache

L2 Cache

x

x'

fetch x

Main Memory

Sparc V8

L1 Cache

L2 Cache

www.kodewerk.com

Hardware Acceleration Slows

Intel announces that focus will shift from clock
speed to multi-core/hyperthreading

multi-core Xeon processors ship late 2005
2007, C|Net reports, Intel and Microsoft state that
software needs to heed Moore’s law

27

www.kodewerk.com

New Programming Environment

28

www.kodewerk.com

Kabutz: Law of Sudden Riches

We no longer have uni-processor systems to hide
behind

Applications suddenly have more CPU
bigger problem for older 3rd party libraries

29

www.kodewerk.com

Dangers

All existing threading bugs start exposing
themselves
We have to worry about

deadlock
live lock
thread stalls
race conditions

Lock contention
serialized execution

Strange behavior in clusters
.....

30

www.kodewerk.com

Database Vendors React

31

www.kodewerk.com

Laptops go Multi-core

Late 2006, ~50% of Java performance course
attendees show up with multi-core laptops

32

www.kodewerk.com

Multi-core is a fact of life

Developers must deal with concurrency
truly threaded applications are more the norm
Multi-core puts more pressure on
• memory
• I/O resources
• shared variables
• Databases?

Sharing is a big performance issue
points of serialization now hurt more than ever

33

www.kodewerk.com34

www.kodewerk.com35

www.kodewerk.com

Little’s Law

Maths explaining the relationship between locking
and throughput

36

b
a
rrie
r

b
a
rrie
r

critical

section

λ =1 / μ
μ = 10ms, λ = 100 tps
μ = 100ms, λ = 10 tps

www.kodewerk.com

Maths to explain relationship between serialized
execution and processor utilization

F -> 0 number of utilized CPU -> N
F -> 1 number of utilized CPU -> 1

Amdahl’s Law

37

F + (1 - F)

1

N

www.kodewerk.com38

Serialized Execution

www.kodewerk.com

Amdahl’s Law

Amdahl says; things work until we need to share
(or otherwise cooperate)

CPU
• both computational units and L1/L2 cache

bus is locked too all other threads while in use
memory/Java Heap (Garbage collection)
I/O (disk, keyboard, console, files)
network
data in memory (locks)

39

www.kodewerk.com

Are You Awake?

L1/L2 caches can thrash

benches in 430ms

benches in 2750ms

40

for (int i = 0; i < matrix.length; i++) {
 for (int j = 0; j < matrix[i].length; j++) {
 matrix[i][j] *= 2;

for (int i = 0; i < matrix.length; i++)
 for (int j = 0; j < matrix[i].length; j++)
 matrix[j][i] *= 2;

www.kodewerk.com

Locking is Pessimistic

41

The glass is half full

www.kodewerk.com

Reducing Contention

Share nothing designs
Pipelined designed

messaging and mail boxes
Minimize transactions

duration
numbers

Minimize locking
Concurrency package

Garbage collection
Hotspot/JIT

42

www.kodewerk.com43

Careful use of Databases

www.kodewerk.com

Automated Memory Management

GC is “stop-the-world”
GC needs exclusive access to Java heap
all application threads must be paused
point of serialization in your application

GC is CPU intensive
application pause time tied to clock speed

An improperly configured Java heap hinders
performance

Too small => too frequent, risk OOME
Too large => long pause times

44

www.kodewerk.com

Law of Leaky Abstractions

45

Java Heap Space

Address

Translation

Disk

System Memory

Garbage Collector

www.kodewerk.com

Keeping Friends Close

Large page support now on all
platforms

keeps related objects on the same
page
helps avoid TLB misses (expensive
to resolve)

46

lock pages into RAM
Solaris support is up to 256m (depending on
class of machine)
Linux/Windows is up to 4m

www.kodewerk.com

Garbage Collection

1.5 parallel becomes default
consider using concurrent

1.6 support escape analysis
references that remain local can be dealt with
more efficiently

47

www.kodewerk.com

More to Come?

Dominate chip architecture is cache-coherent
non-uniform memory access (NUMA)

local access is very quick
remote access is much slower
encourages thread/core affinity
• mitigates L1/L2 cache coherency issues
• reduces contention on bus and remote memory

48

www.kodewerk.com

Garbage Collection Improvements

GC/JVM allocations aware of NUMA
localized allocations GC’d faster
localized allocations stay remain in CPU cache
enabled using -XX:useNUMA (1.6 Update 2)
• Solaris is simple
• Windows and Linux require more complex

configuration
http://java.sun.com/javase/technologies/hotspot/
largememory.jsp

49

www.kodewerk.com

Locking

Acquiring a lock is expensive
maybe

Vast majority of locks are not contended
RDB vendors have known for more than 20
years, locking kills performance

what can we learn from RDBs

50

www.kodewerk.com

Optimizations

Use observations to guide optimizations
Relax constraints
Throughput vs. fairness
Cache to avoid using expensive resources

51

www.kodewerk.com

Hardware to Reduce Contention

Transactional Memory
looks more like an optimistic transaction
lock defines “transactional region”
allows all threads simultaneous access
hardware watches for write-write conflict
thread rollback and memory repair

52

www.kodewerk.com

Software Improvements

JSE 5.0 provides a laundry list of improvements
aimed at reducing contention

atomic variables
improved volatile
java.util.concurrent (JSR 166)

semantically richer concurrency
Collections with copy on write semantics
ConcurrentHashMap
ReentrantLock
ReadWriteLock

53

www.kodewerk.com

Choice

54

Which is best?

www.kodewerk.com

Monitoring

55

public void run() {
 boolean detected = false;
 while (running) {
 if ((counter < 0) || (counter > 2)) {
 if (! detected) {
 System.out.println("Corrupted " + counter);
 detected = true;
 }
 }
 }
}

www.kodewerk.com

Mutator

56

private int counter = 0;

Runnable mutator = new Runnable() {
 public void run() {
 long localCount = 0;
 while (running) {
 counter++;
 counter--;
 localCount++;
 }
 addToTotalCount(localCount);
 }
};

www.kodewerk.com

Volatile

57

volatile private int counter = 0;

Runnable mutator = new Runnable() {
 public void run() {
 long localCount = 0;
 while (running) {
 counter++; counter--; localCount++;
 }
 addToTotalCount(localCount);
 }
};

www.kodewerk.com

Doubly Synchronized

58

// Instance based counter
private int counter = 0;

// Runnable block
Runnable mutator = new Runnable() {
 public void run() {
 long localCount = 0;
 while (running) {
 synchronized(this) { counter++;}
 synchronized(this) { counter--; }
 localCount++;
 }
 addToTotalCount(localCount);
 }
};

www.kodewerk.com

Synchronized

59

// Instance based counter
private int counter = 0;

// Runnable block
Runnable mutator = new Runnable() {
 public void run() {
 long localCount = 0;
 while (running) {
 synchronized {
 counter++; counter--;
 }
 localCount++;
 }
 addToTotalCount(localCount);
 }};

www.kodewerk.com

Doubly Reentrant Lock

60

// Instance based counter
private int counter = 0;
private ReentrantLock lock;

// Runnable block
 try {
 lock.lock();
 counter++;
 } finally { lock.unlock(); }
 try {
 lock.lock();
 counter--;
 } finally { lock.unlock(); }

www.kodewerk.com

Reentrant Lock

61

// Instance based counter
private int counter = 0;
private ReentrantLock lock;

// Runnable block
try {
 lock.lock();
 counter++;
 counter--;
} finally {
 lock.unlock();
}

www.kodewerk.com

AtomicInteger

62

// Instance based counter
private AtomicInteger counter;

// Runnable block
while (running) {
 counter.incrementAndGet();
 counter.decrementAndGet();
 localCount++;
}

www.kodewerk.com

Results

63

Bench Counter

Not Thread Safe 750526139

Volatile 333765152

Double Synchronized 28829033

Synchronized 28799357

Double Locked 28966764

Locked 28830148

AtomicInteger 203393689

JDK 1.5.0_10, Intel 3.4 Ghz Hyper-threaded, Window XP

www.kodewerk.com

Locking

java.util.concurrent.locks.Lock
Allows you to park threads
• for a specific amount of time including forever

ReentrantLock
• comes with a fairness setting

ReentrantReadWriteLock
• support multiple readers
• writer blocks all access

64

www.kodewerk.com

Compare and Set

Atomic primitive wrappers rely on CAS
unsynchronized thead safe type
good for atomic operations

CAS is used to support thread safe lock-free
algorithms

needs support from the hardware

65

cas mem_addr, old_value, new_value

www.kodewerk.com

Coming Soon?

Cliff Click’s lock-less concurrent HashTable
still a research project
extremely complex implementation
allows race conditions to determine state in the
supporting state-machine
relies on CAS

FIFO, LIFO?

66

www.kodewerk.com

JVM Improvements

JSE 6.0 adds to the list of features that can
reduce contention

spin-waits (adaptive spinning)
lock coarsening
lock elision (with escape analysis)
biased locking
altered notify semantics (less lock jamming)

67

www.kodewerk.com68

Does any of this stuff actually work?

www.kodewerk.com

How Good is Escape Analysis
Bench devised by Jeroen Borgers (Xebia)

69

public String concatBuffer(String s1, String s2, String s3) {
 StringBuffer sb = new StringBuffer();
 sb.concat(s1);
 sb.concat(s2);
 sb.concat(s3);
 return sb.toString();
}

public String concatBuilder(String s1, String s2, String s3) {
 StringBuilder sb = new StringBuilder();
 sb.concat(s1);
 sb.concat(s2);
 sb.concat(s3);
 return sb.toString();
}

www.kodewerk.com

Lock Overhead

70

Benchmark StringBuffer StringBuilder %Overhead

Baseline 7896 2760 186%

Escape Analysis 7875 2756 185%

Elimination 4068 2739 48%

Biased 5489 2843 93%

Escape, Elimination 4078 2813 45%

Escape, Biased 5500 2849 93%

Elimination, Biased 4718 2812 68%

Escape, Elimination, Biased 4740 2828 68%

www.kodewerk.com

The Future is Clear

Processors will contain
many more cores

Memory will be segmented
local segments as part of a global space

Applications will continue need to be hardware
aware
Languages improvements

could closures offer better expression of
parallelism?
Totally new language?

71

www.kodewerk.com

The Future is Clear

Operating systems and hardware are being
optimized to better support virtual machines

72

www.kodewerk.com

Contention is Under Siege

73

pessimistic optimistic Improving Concurrency

www.kodewerk.com74

Are you prepared to deliver twice
as much concurrency in the next

18 months?

75

www.kodewerk.com

Concurrency & Performance

76

