OpenlD Connect

explained

VIadimir Dzhuvinov

Email: viadimir@dzhuvinov.com : Twitter: @dzhivinov

mailto:vladimir@dzhuvinov.com

Married for 15 years

File Edit View Navigate Code Anahze Refactor Build Run Tools WCS Window Help

0

E2JOSE+JWT [gsrc [qtest [Jjava EJcom [E]nimbusds s | ECDHCryptoTest~ b ¥ ¥2 '§ 5 [F B
& | B Project - X REHE - 2 o
% v [5J0SE+WT [nimbus-jose-jwt] (~/pr
:I » [.idea
5 v Osrc
v B main

v v Ojava
*3 v [J com.nimbusds
s v [jose
~ » BJcrypto
'y » Bljca

b Ejwk

» [dproc

b [util

@ Algorithm

@ ¢ CommonSEHe
a’b CompressionA

0 CriticalHeader

G’b EncryptionMet

0% Header

© & JOSEException B B B

@ © JOSEObject

© & J0SEObjectTyp
© © J0SEProvider
9 & JWEAlgorithm
© 5 WECryptoPart
© © JWEDecrypter
O & |WEEncrypter
& |WEHeader
@ & JWEOhject
@ & |WEProvider
© & Jwsalgorithm
© © WsHeader
@ & |WsObject

© &)WsProvider
© &)wssigner

M 2. Favorites

.3

pINg 3w

6. TODO 1% 9: Version Control [+.] Terminal [T Maven Projects Event Log
2 i
nfa nfa Git: master + &

I

JavaScript

- ——y s i '
f.lf" r o s __-...- \
-

=

JavaScrit on a bad day

So what is

OpenlD Connect?

OpenID Connect is a new internet
standard for

Identity

Provision
(IdP)

OpenlID Connect supports

mobile / native

clients

OpenlD Connect is good for

consumer social
apps apps

enterprise
apps

OpenlID Connect is backed by

... us and
many others

Salesforce

OpeniD Connect distilled

1. Need to authenticate user?

2. Send user to OpenlD provider
(via browser / HTTP 302 redirect)

3. Get Identity (ID) token back

The key OpeniID Connect artefact

ID Token

asserts the user's identity
(user ID)

Client apps receive an ID token from the OpenID Provider

ID token

ERNACIONAL DE ESTUDIANTE

STUDENT ({53

Studies at | Etudiant a | Est. de Ensefianza

University of Economics
Name | Nom | Nombre

B. Smart
Born | Né(e) le | Nacido/a el

09/03/1993
Validity | Validité | Validez hiha
LB 5 123 456 789

Resembles the concept of an
identity card, in a standard digital
format that can be verified by
clients.

Asserts the user's identity.

Specifies the issuing authority (the
|dP).

May specify how (strength) and when
the user was authenticated.

Is generated for a particular audience
(client).

Has an issue and an expiration date.

May contain additional subject details
such as the user's name, email
address and other profile information.

Is digitally signed, so it can be verified
by the intended recipients.

May optionally be encrypted for
confidentiality.

ID token internals

e Encoded as a JSON Web
Token (JWT).

"sub" . "alice", * The claims about the subject
"aud" . "s6BhdRkqt3", are packaged in a simple
"nonce" : "n—-0S6_WzA2Mj", JSON ObJeCt

"iss" : "https://c2id.com",

"exp” : 1311281970, Digitally signed typically with
"iat" : 1311280970, the provider's private RSA
"auth_time" : 1311280969, key or a shared secret

e P — (HMAC) issued to the client
during registration.

 |s URL-safe.

" amr " 0 ["pwd" ’ " otp "]

Encoded ID token

eyJhbGciOiJSUzI1NilsImtpZCI6ljFIOWdkazcifQ.ewogimlzc
yl6ICJodHRwQIi8vc2VydmVyLmV4YW1wbGUuY29tliwKICJzdWIiOiAiMjQ4Mjg5
NzYxMDAXxliwKICJhdWQiOiAiczZCaGRSa3F0MylsCiAibm9uY2UiOiAibi0owUzZ
fV3pBMk1qliwKICJleHAiOiAxMzExMjgxOTcwLAogimlIhdCI6IDEzMTEyODA5Nz
AKfQ.ggW8hZ1EuVLuxNuulJKX_V8a OMXzROEHR9R6jgdqrOOF4daGU96Sr_P6q
Jp6lcmD3HP990bi1PRs-cwh3LO-p146waJ8lhehcwL7F09JdijmBgkvPeB2T9CJ
NgeGpe-gccMg4viKjkM8FcGvnzZUN4 _KSP0aAp1t0J1zZwgjxqGByKHiOtX7Tpd
QyHESICMiKPXfEIQILVqOpc _E2DzL7emopWoaoZTF_m0 _NOYzFC6g6EJbOEOROS
K5hoDalrcvRYLSrQAZZKflyuVCyixEoVIGfNQC3_osjzw2PAithfubEEBLuUVVk4
XUVrWOLrLIOnx7RKKUSNXNHq-rvKMzqg

Cool ID token uses

e Simple stateless session management — no
need to store sessions in memory / on disk

 May be passed to 3rd parties to assert the
user's identity

 May be exchanged for an access token at the
token endpoint of an OAuth 2.0 authorisation
server. This feature has uses in distributed
and enterprise applications. See RFC 7523.

How to obtain an ID token?

Using the OAuth 2.0

protocol flows

The OAuth 2.0 flows

Start

\

¥

Your token!!!

Choose your flow

 Authorisation code flow

- for typical web and mobile apps
- the client is authenticated
- tokens retrieved via backchannel
 Implicit flow
- for JavaScript applications that run in the browser
- the client is not authenticated
- tokens returned via front-channel, revealed to browser
e Hybrid flow -
- allows app front-end and back-end to receive tokens independently

- rarely used

http://openid.net/specs/openid-connect-core-1_0.html#Authentication

http://openid.net/specs/openid-connect-core-1_0.html#Authentication

The OpenlD auth request
(code flow)

Send user to OpeniD provider with auth request:

https://openid.provider.com/authorize?
response_type=code
&scope=openid
&client _id=s6BhdRkqt3
&state=afOifjsldkj
&redirect_uri=https%3A%2 %2Fclient.example.org%2Fcb

The OpenlD auth response
(code flow)

On successful auth the OpenlD provider will redirect the
browser back to the client with an authorisation code:

https://client.example.org/cb?
code=SplIxIOBeZQQYbYS6WxSDbIA
&state=af0ifjsldkj

The OpenlD auth response
(code flow)

If authentication failed the OpenID provider may return
an error code:

https://client.example.org/cb?
error=access denied
&state=af0ifjsldkj

Exchange code for ID token
(code flow)

Client makes back channel request to exchange code
for ID token. Note that the client authenticates itself to
the server here!

POST /token HTTP/1.1
Host: openid.provider.com

Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3FOMzpnWDFEmMQmEOM2JW

grant_type=authorization_code
&code=SplxIOBeZQQYbYS6WxSbhIA
&redirect_uri=https%3A%2F %2Fclient.example.org%2Fcb

Exchange code for ID token
(code flow)

Finally, we get our ID token! But what's this access
token?

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"access_token": "SIAV32hkKG",

"token_type": "Bearer”,

"refresh_token": "8xLOxBtZp8",

"expires_in": 3600,

"id_token": "eyJhbGciOiJSUzI1NilsImtpZCI6ljFIOWdkazc..."

Userinfo

"sub" : "alice",
"name" : "Alice Adams",
''given_name" : "Alice",
"family name" : "Adams",

"email" : "alice@wonderland.net",

"email verified" : true,

“"phone_number" : "+359 (99) 100200305",
"profile" : "https://c2id.com/users/alice",
"Ldap_groups" : ["audit", "admin"]

OpenlD Connect defines an extensible JSON schema for releasing

consented user details to client applications

mailto:alice@wonderland.net

Requesting Userinfo with the
OpenlD auth request

Send user to OpeniD provider with auth request:

https://openid.provider.com/authorize?
response_type=code
&scope=openid%20profile%20email
&client _id=s6BhdRkqt3
&state=afOifjsldkj
&redirect_uri=https%3A%2 %2Fclient.example.org%2Fcb

Access token

Resembles the concept of a
physical token or ticket. Permits
the bearer access to a specific
resource or service. Has typically
an expiration associated with it.

OAuth 2.0 access tokens are
employed in OpenID Connect
to allow the client application to
retrieve consented user details
from a UserInfo endpoint.

The server may extend the
access token scope to allow
the client access to other
protected resources and web
APls.

The client treats the access
token as simple opaque string
to be passed with the HTTP
request to the protected
resource.

Userinfo request with access
token

Simply include the token in the authorisation header
using the Bearer schema (RFC 6750).

GET /userinfo HTTP/1.1

Host: server.example.com
Authorization: Bearer SIAV32hkKG

Userinfo response

The response from the Userinfo endpoint, containing
the consented details (claims / assertions) about the
end-user:

HTTP/1.1 200 OK

Content-Type: application/json

{
"sub": "248289761001",
"name": "Jane Doe",
"given_name": "Jane",
"family _name": "Doe",
"preferred_username": "j.doe",
"email": "janedoe@example.com”,

"picture": "http://example.com/janedoe/me.jpg"

The 2 key OpenlID Connect
artefacts

ID Token Access Token

o=

asserts the user's identity optional, to retrieve
(user ID) consented Userinfo

The OpenlID Connect framework

OpeniID Connect

User identity is asserted by means of
JSON Web Tokens (JWT)

Clients use standard OAuth 2.0 flows
to obtain ID tokens

Mantra: Simple clients, complexity
absorbed by the server

Any method for authenticating users —
LDAP, tokens, biometrics, etc.

JSON schema for UserInfo

Supports optional provider discovery,
dynamic client registration and
session management.

Extensible to suit many use cases.

Federation is possible.

OpenlID Connect provider
endpoints

 Core provider endpoints:
- Authorisation endpoint
HTTP Endpoints - Token endpoint
- UserlInfo endpoint
» Optional provider endpoints:
— - WebFinger endpoint
- Provider metadata URI
- Provider JWK set URI
- Client registration endpoint

- Session management endpoint

Optional endpoints

\WebFinger: enables dynamic discovery of the OpenlD Connect provider
for a user based on their email address.

Provider configuration URI: well-known URI returning endpoint and other
provider information such as optional capabilities; the client applications
can use it to configure their OpenlD Connect requests to the provider.

Provider JWK set URI: JSON document containing the provider's public
(typically RSA) keys in JSON Web Key (JWK) format; these keys are used
to secure the issued ID tokens and other artefacts.

Client registration: enables client applications to register dynamically, then
update their details or unregister; registration may be open (public).

Session management: enables client applications to check if a logged in
user has still an active session with the OpenlD Connect provider; also to
signal logout.

The future: dynamic discovery +
client registration

alice@wonderland.net

\

\ 4

ID token for Alice

The specifications

OpenlD Connect: http://openid.net/connect

OAuth 2.0 (RFC 6749): hitp://tools.ietf.org/ntml/rfc6749

OAuth 2.0 Bearer token (RFC 6750): http://tools.ietf.org/html/rfc6750
JSON Web Token: hitp://tools.ietf.org/html/rfc7519

JSON Web Signature: hitp://tools.ietf.org/html/rfc7515

JSON Web Encryption: hitp://tools.ietf.org/html/rfc7516

JSON Web Key: htip://tools.ietf.org/html/rfc7517

Thank You!

Q+A

